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S U M M A R Y  
Forced heat convection from a sphere at low P6clet number is studied using the method of matched asymptotic 
expansions. An inviscid theory is applied for the velocity field. The results obtained in this paper may be applicable 
to the flow of low Prandtl number fluids. 

1. Introduction 

The problem of heat transfer from a sphere immersed in a stream at small P6clet number has 
been studied so far by many authors. Recent contributions to the problem are made by Acrivos 
and Taylor [1] and by Rimmer [-2], in which the Nusselt number N is expressed as an expansion 
in terms of the P6clet number P = o-R using the method of matched asymptotic expansions, 
where a denotes Prandtl number and R Reynolds number. No restriction on the value of o 
is imposed in the former and restriction of o-= O (1) in the latter. Since Acrivos and Taylor use 
the Stokes approximation of creeping flow for the velocity field, the application of their ex- 
pansion to the fluid having the Prandtl number less than unity is limited to the case P ~ a. 
Hence, for the flow of extremely low Prandtl number fluids such as liquid metals, the P6clet 
number range over which the expansion can be successfully applied is very narrow. On the 
other hand, Gross and Cess [-3] reasoned that, when the Prandtl number becomes extremely 
small, an inviscid potential flow approximation can be used for the velocity in the energy 
equation. The experimental justification of the conjecture is given by Sajben [-4] comparing 
the experimental results for the flow of mercury past a circular cylinder with those derived from 
inviscid theory [5]. 

In the present paper, the inviscid theory is applied to the flow around a sphere and the results 
may be applicable to the flow of low Prandtl number fluids. The P6clet number is assumed to 
be smaller than unity and the method of solution is similar to that used by Acrivos and Taylor. 

2. Mathematical Formulation of the Problem 

We consider a single sphere of constant temperature T w immersed in a uniform stream of 
velocity Uo~ of an inviscid fluid. On choosing the co-ordinate variables as illustrated in fig. 1, 
the governing equation for the temperature distribution in the fluid can be written as 

&' u ; & ' _  ,-7,2. 
U'r Or' + r' ~0 XVr ~ (1) 

where t' is the temperature of the fluid, 1< the thermal diffusivity, u'r and u~ are the velocity 
components in r' and 6 directions and V'r z is the operator 

1 L ( r ! 2 r ~ l  1 c~ f l  2 C~ _ _  +  =cos0. (2) 7 ' 2 =  

As is well known, the velocity distribution of a potential flow around a sphere is given by 

a a , U~o + sin 0,  (3) u~=U~ - cos0 ,  u~ 2 
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Figure 1. 

Defining such 

r = rr/a 

t = ( t ' -  

the equations 

8t 
Ur~r + 

ur = ( 1 - r  -3) cos 0,  

t = l  at r = l ,  
J t ~ O  as  r ~  ~ ,  

where a is the radius of the sphere. The boundary conditions for the temperature field are 

t ' = T ~  at r ' = a ,  (4) 
t ' ~ T o o  as r ' ~ .  

dimensionless quantities as 

, u, = u' , /u|  uo = u ; / U ~ ,  } 
T~)/(T~- T=), P U s a /x , .  (5) 

(1), (3) and (5) are written in dimensionless form as 

Uo ~t 1 2 - V~ t ,  
r 30 P 

Uo = - � 8 9  -3) sin 0,  

(6) 

(7) 

(8) 

where V 2 is a dimensionless form of V'r 2. 
The method of solution of the eq. (6) is to obtain the temperature as an expansion in terms of 

P6clet number for P < 1 in each of two regions, one close to, and the other far from the sphere, 
which we call inner region and outer region respectively. In the inner region where r =  O(1) 
and the convection term is of minor importance compared with the conduction term, we assume 
an expansion of the form 

t(r, #) = to(r, #)+ fl (e)tl (r, #)+ f2(P)t2(r, # ) + . . . ,  (9) 

where 

f~+a(P)/f,(P)~O as P--+0, (10) 

which we call inner expansion. The inner expansion satisfies equation (6) and the boundary 
condition on the surface. In addition, the behaviour of t for r ~  oo can be determined through 
matching with the expansion valid in the outer region, which we call outer expansion. 

In the outer region, that is where r =  0 (P-1), we introduce new variables defined as 

p = Pr, T(p, #)= t(r, #), I (11) 
G(p. ~) = u.(r. #). Uo(p. , )  = uo(rl #). 

in terms of which the energy eq. (6) becomes 
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OT Uo aT  2 (12) voV+ -vor, 
p O0 

where V~ is the same operator as V~ but with r replaced by p. This equation reflects the proper 
balance between the convection and conduction terms in the energy equation. The expressions 
for Up and Uo are obtained by rewriting eqs. (7) in the variable p instead of r, that is, 

Up = cos 0 - ( c o s  O/p3)p a , U o = - s i n  0 - ( s i n  O/2pa)P 3 . (13) 

The solution of eq. (12) is assumed to be of the form (outer expansion) 

T(p, #) = F 0 (P) T O (p, #) + F1 (P) T1 (p, #) + 172 (P) T2 (p, #) + . . . ,  (14) 

where 

F.+i(P)/F.(P)--+O as P - + 0 .  (15) 

The outer expansion is required to satisfy the boundary condition at infinity and, instead of 
satisfying the condition on the surface, to match with the inner expansion. The matching 
condition can be written as (Van Dyke [6]) 

lim t = lim T (16) 
r ~ o o  p--+O 

for P--+0. 

3. First Three Expansion Terms 

The equation for to is obtained by putting P = 0 in eq. (6), that is, we have 
2 __  Vr to - 0 .  (17) 

On inserting eqs. (13) and (14) into eq. (12), we have for To 

cos 0 0To sin 0 0T 0 0p p a0 - V2 T~ (18) 

The required solutions of these two equations are already obtained by Acrivos and Taylor 
as follows. 

t o = r - i ,  (19) 

T O = p - '  exp {�89 ( # -  I)} (20) 
and 

Fo (P) -= P .  (21) 

From eq. (20), we have for small p 

T, ,~P{p- i+�89 z -  1)+ O(p)},  (22) 

and hence, from the matching condition (16), we can expect for large r 

f ,  t, ,-, - �89 (1 - #).  (23) 

In view of this, we have 

f l  (P) = P ,  (24) 

and the equation for t i becomes 

V2tl  = ( - r - 2 + r - 5 ) #  �9 (25) 

Here we have used the lower order approximation to calculate the convection term. The general 
solution of the equation is 

ta =(�89 ~ (Anrn+Bnr-n-i)Pn(t~), (26) 
n = O  
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where P,(/0 is the Legendre polynomial of degree n and A,, B. are integral constants. Using 
the matching condition (23) and the condition tl = 0  at r--= 1, we have 

A o = - � 8 9  A , = 0  for n > l ,  
(27) 

B o �89 B I = - � 8 8  B , = 0  for n > 2 .  f 
Therefore t~ has been determined as 

t 1 = � 8 9 1 8 9  (28) 

From eqs. (19) and (28), the asymptotic behavior of t for r ~  oe is found to be 

t,,~r_l+p(p@l + �89 3p ) 4 r -  2 + . . . .  (29) 

Matching consideration gives, for small p, 

Fa T1 ~ �89 p - l .  (30) 

In view of this, we have 

F1 (P) = p2 ,  (31) 

and the equation for Ta becomes 

cos 0 8T1 sin 0 ~ T  1 2 
Op p 80 - VpT~. (32) 

This equation is identical with that for T o and the required solution is clearly 

T, = �89 exp {�89 ( # -  1)}. (33) 

From the eqs. (20), (21), (31) and (33), the matching condition for the third term of the inner 
expansion is found by usual procedure to be 

f2tz~p2{(18#)2r_Tl-#+ . . .} ,  (34) 

for large r. From this, we have 

fz (P) = p2 (35) 

and the equation for t 2 becomes 
2 V, t 2 �89189189 

5 - 4  3 - 6  5 - 7  +(-�89 -xr +~r )P2(#). (36) 

After a straightforward calculation, the required solution is found to be 
1 2 7 - 1  1 - 2  t 2 = ~ ( ~ r - l + i g r  + g r  -�88188189189 l(p) 

+ �88189 r -1 + ~ r -  2 + l_~r- a _ �89 +4~r-  5) P2 (#). (37) 

From the eqs. (19), (28) and (37), the matching condition for T2 is easily found to be 

F2 T2 ~ �88 [ _ 3#p -2 + { 7  _ P2 (#)} P - '  + - . . ] ,  (38) 

for small p. From this, we have 

F2 (P) = p3,  (39) 

and the equation for T 2 is found to be identical with that for T 0. The general solution which 
vanishes at infinity is [1] 

T2 = n~ exp {�89 1)} (2n+ 1)C,K,+ ~ P.(#), (40) 
n = 0  
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where C. is an integral constant and K.  + + is a modified Bessel function. The matching condition 
(38) determines C. as 

] C o -  807c' !' 

1 (41) 
C1 - 8re' 

C, = 0  for n > 2  

and we have 

17 (42) T2 = _ 1 p - 1  {~_6_3(1+2p-1)#} e x p { � 8 9  1 ) } .  

4. Higher Expansion Terms 

By repeating the similar procedure to that used so far, we can also obtain the higher order 
expansion terms. For fourth term of the inner expansion, we can finally obtain, after a straight- 
forward calculation 

f3 (P) = p3 (43) 

ta l ( _ � 8 9  51 1 -1 1.-z  1.-4 = + r - ~ o + ~ r  +~r - g r  + ~ r  -5) 
1 3..2 - - - 2 3 - - 3 _ - 1  - t - g ( g r  - - r ~ g g l - g r  2 4 7 . . - 2 - - 1 1 . . - 3 - -  3 . - 4 -  - -  1 -T6r  - i - ~ r  - I - ~ r  

+ v~or- 5-2%r-6 + 2-~6r- 7) Pl (kt ) 
+ 5 r - 2  5 r - 3  l r - 4  ] - 5 r - S X p  i x +2~( - r 2 + r - 2 r - 1  ~ - ~  - 3  ~ ; 2t#) 

I- 3 l 1  2 1 - - 1  - 1  3 15 - 4  3 - 5  1 - 6  1 - 7  r 6 t ~ r - ~ + ~ r  + ~ r - 2 - � 8 9  - + ~ r  + ~ r  - m r  +mr  )P3(/2). (44) 

From the forms of to, tl, t2 and ta, the matching condition for F3 T3 is found to be 

F3 T3 ,,~ �88 [P1 (#)P-3 + �89 {�89 P1 (/2) + ~P2 (#) } P-  2 
11 3 1 1 + {Wo + Y0 P, (/2)-~P2 (/2)+-~P3 (/2)} P -x + . . . ] ,  (45) 

for small p. In view of this, we have 

Fa (p) = p4 ,  (46) 

and the equation for T3 becomes 

OT3 sin 0 8T 3 _ cos 0 8To sin 0 8T o 
V 2 T a - c o s  0 -~p + - -  p3 " (47) 

p aO ap 2p 4 80 
The transformation 

T 3 (p,/2) = T~"(p,/2) exp (�89 (48) 

reduces the eq. (47) to 
2 1 , (V o - ~) T~ = { (p-5 + l p -  4) P1 (/2)- �89 4 P2 (#) } exp ( -  �89 (49) 

and the general solution that vanishes at infinity is easily found to be 

T 3 = [Dop-l+( �88 ) 

+ {(12D2-�88 

~ (n+m), ) 7 
+ .=3L O, [ m~"=o ml(n--~m~)l.)l.-Pm+"~P"(/2)J exp{�89 (50) 

where D. is an integral constant. Matching this solution with t(r, #), we find that 
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Do- A, / 
D 1 = 0,  (51) 
0 2 - -  1 8 ,  

D . = 0  for n > 3 ,  

and therefore T3 has been determined completely as follows. 

Ta = {i-~P - I  -FlP -3 P1 (# )+{(p-  2 + { p -  l) P2 (#) } exp { { p ( p -  1)}. (52) 

Finally, the fifth term of the inner expansion is found, after a straightforward but somewhat 
tedious calculation, to be 

f4(p  ) = e 4 ,  (53) 

t 4 = ~ (2r 3 -- 5r 2 +-~r - -  6 -- ~ r - i  + a~r- 2 +_97r-3 
2 5 3 ~ - - 4 • 1 7 7  3 ~ - 7  3 ~ - - 8 L  1 ~--9~t 

+ I ( _ A F 3  • 3_2 2 7 _ - - 1 - - 3 _ - 1  T ~ F - -  ~ 6  r -t- g --t- 3 r + 1 3 6 ~ o  r - Z + 2J-o r - 3 

3 - - 4  1 . - 5  1 . . - 6 - - 9  . - 7 ) P 1 ( # )  -I- 1--~r --~r ?~r -i-- ~ r  

4- 17~- t 3 r  1 L4"3 - -  7t '2 + 26-~r-Jr- 3 - -  ~ r -  1 + ~62 r -  2 J- 267 7" - 3 .3--5~5r 

6 ,_ -4  i _  o _ ,  - -  T~r  - -  ~'-~ r -I- 4-~6r - t -~r  
+ 1 ( _ 1 r 3 •  1 _2 3 - - 1 _ - 1  1 _ - 2  1 _ - 3  

T ~ - - f f r  - -  ~ "1- ~ r  - -  ~"ff r - - ~ r  -k- 5~4 r - 4  
l . . --5 1 _ - - 6 - -  t _-7"~ 1 1 3 

+i~+9r-l--9r-Z+7r-3• -- 4-Wff6z-r23935"-s 

..~ .~23 ?,- 6 jr. 2_~r-7 _ � 89163  ..~ 2~3r  - 9) P4 (P ) ,  (54) 

5. Conclusion 

From the inner expansion solution, an expression for the average Nusselt number defined by 

(55) 
- 1  ~.UlJr=l 

is found to be 

N = 2 13 2 7 3 48407 0 4 •  (56) + P - z - 6 P  +T6P -470400-  T . . . .  

A comparison of the result with that of Acrivos and Taylor is shown in fig. 2. At extremely 
small values for P, both results show good agreement. This behaviour is consistent with the 

3- 

N 

I 2.5. 

t 
Acrivos and Taylor / / "  

Y //4" 
/ Y  1 

/ eq.(56),St erms 

/ 
o oJs i 

Figure 2. 
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s t a t emen t  m e n t i o n e d  ear l ier  a b o u t  the  app l i cab i l i ty  of  Acr ivos  and  Tay lo r ' s  resul ts  to  low 
P r a n d t l  n u m b e r  fluids. F o r  P > 0.5, the  dev ia t ion  of  Acr ivos  and  Tay lo r ' s  curve f rom tha t  of  

the  presen t  t heo ry  r ap id ly  increases.  
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